JacobiNeRF: NeRF Shaping with Mutual Information Gradients

- Xiaomeng Xu^{1,*}, Yanchao Yang^{2,3,*,+}, Kaichun Mo^{3,4}, Boxiao Pan³, Li Yi^{1,5,6}, Leonidas Guibas^{3,7}
- ¹Tsinghua University, ²The University of Hong Kong, ³Stanford University, ⁴NVIDIA Research, ⁵Shanghai AI Laboratory, ⁶Shanghai Qizhi Institute, ⁷Google Research
 - *Equal Contributions, +Corresponding Author
 - Paper Tag: THU-AM-002

Preview: Plain NeRF Lacks Semantic Awareness

(a) random neurons

(b) a single layer

(c) a block of layers

"Jiggling" the neuron weights of the NeRF results in diffuse perturbations that are not semantically aligned

images

(a)

(b)

(c)

Preview: User Interactions with 3D Scenes through 2D Views

selecting

editing

label propagation

Preview: Encode Semantic Correlations into a NeRF

Preview: NeRF Shaping with Mutual Information Gradients

Preview: Label Propagation

Semantic Seg

Instance Seg

Example sparse annotation interaction

User Interactions with NeRFs

Semantic Structure of a Scene is Reflected in its Co-Variations

this chair has moved

the table became longer

the table became darker

Mutual Information and 2nd Order Relationships

A is more correlated with B than with C $\mathbb{I}(\mathsf{A},\,\mathsf{B}) > \mathbb{I}(\mathsf{A},\,\mathsf{C})$ X is more correlated with Y than with Z $\mathbb{I}(\mathsf{X},\,\mathsf{Y}) > \mathbb{I}(\mathsf{X},\,\mathsf{Z})$

Shaping Neural Representations

Can we shape NeRFs to better reflect mutual correlations in the scene?

The scene tangent space

 $\mathbb{I}(\mathsf{A},\mathsf{B}) > \mathbb{I}(\mathsf{A},\mathsf{C})$ $\mathbb{I}(X,Y) > \mathbb{I}(X,Z)$

Mutual Information via NeRF Gradients

Mutual information

$$\mathbb{I}(\hat{I}(\mathbf{p}_i), \hat{I}(\mathbf{p}_j)) \approx \left| \cos\left(\frac{\partial \Phi_i}{\partial \theta^D}, \frac{\partial \Phi_j}{\partial \theta^D}\right) \right|$$

Inter-pixel correlations are captured by cosine similarity of the NeRF Jacobians

$$I(\mathbf{p}_i) = \Phi(\mathbf{o}_i, \mathbf{v}_i; \theta)$$

$$I(\mathbf{p}_j) = \Phi(\mathbf{o}_j, \mathbf{v}_j; \theta)$$

$$\hat{I}(\mathbf{p}_i) = \Phi(\mathbf{o}_i, \mathbf{v}_i; \theta^D + \mathbf{n})$$

$$\hat{I}(\mathbf{p}_j) = \Phi(\mathbf{o}_j, \mathbf{v}_j; \theta^D + \mathbf{n})$$

11

Setting up Semantic "Neuronal Resonances" via Aligning Gradients

Shaping co-aligns gradients of correlated points (here points of the same semantic class)

NeRF MLP Shaping via Mutual Information Gradients

General purpose image feature: DINO

Obtain some source of semantic affinity

InfoNCE contrastive loss on gradients + reconstruction loss

Contrastive training aligning gradients

NeRF Shaping Causes Gradient Alignment

Application: Editing Appearance

Application: Editing Appearance

Application: Entity Selection

image

NeRF

JacobiNeRF

From a single point we can select an entire semantic entity.

Application: Label Propagation

Acquire dense labels of a scene given sparse annotations.

Label one pixel for each class from one view

Dense label for any view

Propagation Through Resonances

2D version (JacobiNeRF-2D)

Given m labels

Source view

Perturb along gradients

Target view

m responses

.....

Semantic Segmentation (sparse 1pix/class, Replica)

Given label

J-NeRF 3D

Semantic Segmentation (sparse 1pix/class, Replica)

Semantic Segmentation (sparse 1pix/class, Replica)

1 pix/class 1 view 30 28.3 26.3 25 25.3 20 18.7 18.1 15 Semantic NeRF DINO NeRF 3D J-NeRF 2D DINO 2D J-NeRF 3D

mloU

Average results on 7 scenes, 180 test views for each scene

Acc

Semantic Segmentation (dense 1view, Replica)

Given label

J-NeRF 3D

Semantic Segmentation (dense 1view, Replica)

Semantic Segmentation (dense 1view, Replica)

Dense label 1 view

mloU

Average results on 7 scenes, 180 test views for each scene

Acc

Instance segmentation (sparse, 1pix/instance, ScanNet)

Source View

Target View

GT

Instance segmentation (sparse, 1pix/instance, ScanNet)

mloU

Average results on 4 scenes, ~180 test views for each scene

Acc

Instance segmentation (1 view, dense, ScanNet)

Source view Target view GT

DINO-2DD-NeRFJ-NeRF 3DImage: Dino-2DImage: Dino-2DImage:

Instance segmentation (1 view, dense, ScanNet)

mloU

Average results on 4 scenes, ~180 test views for each scene

Acc

https://github.com/xxm19/jacobinerf

